手机浏览器扫描二维码访问
18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(BrookTaylor),于1685年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生。
1701年,泰勒进剑桥大学的圣约翰学院学习。
1709年后移居伦敦,获得法学学士学位。
1712年当选为英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。
从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。
1717年,他以泰勒定理求解了数值方程。
泰勒以微积分学中将函数展开成无穷级数的定理着称于世。
泰勒在无聊的玩GeoGebra,里面有个公式:
Y=A0+A1x+A2x^2+A3x^3+A4x^4+A5x^5+A6x^6+A7x^7+A8x^8+A9x^9
然后无聊的拨弄着滑动条来随意改变这些个A值。屏幕上函数图像不断变化着,但那线条总是歪七八扭,不听使唤。他认真了起来,扩大了A值的范围和精度,逐渐找到规律之后,他已经能够调出剑尖,牙齿,猫耳等图像。
他不断增加项数,调整参数,他发现增加的项数越多,他就越能掌控图像的变化。
他像扭铁丝似的上下弯折着曲线,无意中调出了一段波浪形的图像,看着似乎挺眼熟……
——这不是sin函数吗!
他抑制不住自己的兴奋,赶紧输入了标准的sin函数进行对比,同时继续调整多项式,使这个山寨函数尽可能地贴近正品。
他仔细端详着,单看眼前这一段,简直可以以假乱真,不过越到后面,分歧也就越明显了。
他猛然意识到:“我能够控制多项式画出任意图像!甚至把它伪装成其他函数!“
但是他很快冷静了下来,问了自己一连串的问题:所谓的任意,可以是无限制的任意吗?我能否完美地“伪装“出一个目标函数?如果不能,那又能够伪装到何种程度?摆在眼前的具体问题就是,能否“伪装“出一个完美的sin函数?
他决定一探究竟。如果存在某n次多项式等于sin(x);则其导函数也等于sin(x)的导函数;它的二阶导也等于sin(x)的二阶导;它的三阶导也等于sin(x)的三阶导;
……它的n阶导也等于sin(x)的n阶导。
可是,每求导一次,多项式就会降一阶。
求到n阶导不就变成常数了吗?
宗门全是美强惨,小师妹是真疯批 哦豁!虐文炮灰不干了! 永恒大陆之命运 混迹娱乐圈的日子 农夫是概念神?三叶草了解一下! 重生在宝可梦,我的后台超硬 在下潘凤,字无双 摊牌了,我爹是绝顶高手! 快穿之炮灰得偿所愿 暗无 新人驾到 至尊战皇 我一枪一剑杀穿大陆 穿到八零,我自带锦鲤系统! 大明:开局气疯朱元璋,死不登基 穿成商户女摆烂,竟然还要逃难! 国运:拥有多重身份的我很合理吧 译文欣赏:博伽瓦谭 我的徒弟不对劲 玄灵界都知道我柔弱可怜但能打
身世坎坷历经沧桑人间情意究竟为何物?妈妈是什么?奶奶是什么?姑姑婶婶又是什么?也许,都是女人罢了。你们给了我们生活的必须,但是她们没有给我们家庭的温暖,因此从理智上我们应该感激你们的,可是感情上很多时候是会出现偏差的。我喜欢熟女喜欢年龄稍大的女人当然是女人我都会喜欢当然是那种好女人...
石焱携功法修改器重生入九域玄幻世界,人族挣扎求生。九域世界以游戏形式发售面世。当有一日,两界融合,妖魔肆虐而来。石焱内测进入九域世界,这一日,游戏尚未发售,玩家尚未进入,妖魔尚未影响书友Q群371073565...
别被书名骗了,取名废,其实就是女强无CP,村姑背景系统逆袭流,也俗称慢穿泥石流,凶杀末世武侠仙侠魔法啥都有,还有,新书820不见不散。官方群满一千粉丝值进(五九零六五三四八三)后援群,满一万粉丝值进VIP群。PS本文无CP...
从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...
...
流氓少爷实际上就是流氓少爷尘世游只不过作者名字不同,但至尊包不同和至尊风流就是同一个人,流氓少爷已经完本了,但两本书基本是一样的,只是章节数字不同而以。所以就同时把两书的章节数字标出此书记录S省富家少爷夏丰银玩转都市,风流逍遥的过程,全书以YY为主,以使读者浴血沸腾为目标,那些自命清高者可以不看!没有最淫荡,只有更淫荡!要想成淫才,快到此处来...